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Abstract. We have derived a hyperbolic secant form of the memory function from the Mori
equation of motion using a Markovian approximation and an ansarz for its higher-order metnory
function. The validity of the memory function has also been investigated.

The Mori integrodifferential equation [1] or motion has played a key role in the study of
transport and dynamical properties of classical dense fluids. In this approach the fundamental
theoretical quantity to be estimated is the memory function. Althongh there exist a
microscopic formal expression for the memory function, it is not yet possible to calcuiate it
exactly, Therefore, a number of phenomenological forms for it have been proposed [2,3]
in the literature without assigning a theoretical basis for it. In a series of papers [4-9]
we have used a hyperbolic secant form of the memory function to calculate coefficients
of self diffusion, shear viscosity, thermal conductivity and dypamical properties of dense
finids. This model has also been used by Heyes and Powles [10] to predict the transport
coefficients of Lennard-Jones (LJ) fluids. Results of the model memory function coupled
with microscopic sum rules have offered an interpretation of the transport coefficients [4-7]
of LT fluids over a wide range of densities and temperatures and also of dynamical properties
of fluid argon [9] and a liquid metal [8] as was judged by their comparison with simulation
and experimental data. Very recently the Mori equation of motion was solved analytically
[11] using a sech(bt) form of the memory function. There its advantages over a Gaussian
memory function and a simple exponential memory function are discussed. However, in
all these studies the hyperbolic secant memory was used in a phenomenological sense, and
hence the reason for its success in predicting transport coefficients is not yet fully understood.
This could be achieved if the phenomenological form of the memory function is derived
from its equation of motion which is the motivation of the present work. Therefore, in
this paper we provide a theoretical formulation for realizing this memory function from the
Mori equation of motion using two plausible approximations.

The time evolution of the time correlation function (TCF) C(¢) is obtained from the
Mori equation of motion given as

@%-erl(t—r)C(r)dr =0 1)
dr 0
where M;(t) is the first-order memory function defined as

My () = (AQ0) exp(i(1 — P))LtA(0)) (2)
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with A(?) as a dynamical variable of C(f) such that

C@) = (A A0).

In equation (2), P and L are the projection and the Liouville operators, respectively. From
the projection operator technique used in deriving equation (1), it can be shown that M (?)
and higher-order memory functions satisfy an equation similar to equation (1) so that

dMl(t)

f Mt — )M (z)dr = 3

and

sz(t ) .

f Ms(t — OIMa(z)dr = €))]

where M,(t} and M3(2) are the second- and third-order memory functions,
Defining the Fourier-Laplace transform given as

flw)=i f = exp(ior) £ (1) ¢ (5)
o
we rewrite equations (3) and (4) in the Fourier and Laplace space as
- Mi(t=0)
Mi(w) = —————— 6
1{w) ot i@ ©)
and
- My(t = 0)
M = e ——, 7
2(w) ot @) (1)

Eliminating Mo (w) from equations (6) and (7) we obtain
My (@)o? + My (t = 0w — Ma(t = 0)i1 () + Ms(@) (@M (@) + Myt =) =0.  (8)
On taking the inverse transform of the above equation, we obtain

d*M, 63
drz

dMI (1‘)

+ 02 My () + f Mst — 1) =0 ©)

where b = M,(t = 0). The realization of the hyperbolic secant memory from equation (9}
is based on two approximations. First, we use a Markovian approximation, i.e.

Mg(i' - T.') - M3(t) (10)

which is based on the fact that the effect of the operator is to project out [12] the slowly
varying properties of the system and, therefore, the Markovian approximation can easily be
used for higher-order memory functions. Further, it has been recently suggested by Nettleton
[13] that, by a suitable choice of the projection operator appearing in the definition of a
memory function, one can obtain similar results for the correlation function obtained by
using the Markovian approximation.
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The second approximation introduces a closure for Mi(¢} which makes it depend on
M (r). The ansaz is

M3(t) = AM(t) + BMi (1) (11)

where A and B are two coupling constants. This assumption is very similar to the assumption
made by Gotze [14] to describe the structural glass transition. Here, it may be noted that
equation (11} is one stage higher than that of Gotze's work. However, the nature of
equation (1} preserves the idea of the feedback phenomena used in explaining supercooled
liquids or glasses [15]. The physical background of the arsaz is the mode-coupling ideas in
treating strongly interacting systems. Making use of equations (10) and (11) in equation (9),
we obtain

d2My ()

de?

where @ = M;(0). This is a2 non-linear equation for a conservative system. We have
tried to solve this equation for M)(#) numerically for all possible choices of A and B.

This analysis indicates the possibility of periodic solution {16] of the equation except for
A = B/a = 2b% /4, which on substituting in equation (12) gives

M 1)
ds?

This equation is well known in non-linear dynamics and is exactly solvable with its solution
given by

— M (t)(Ba — b*) + MZ(t)(B — Aa) + AM} (1) =0 (12)

2
— b My () + %M{’(r) =0 (13)

My (1) = a sechibe). (14)

Thus we see that equation (13) whose solution is a hyperbolic secant function is derivable
from the Mori equation of motion. Here, it may be noted that equation (14) satisfies the sum
rules of the TCF up to fourth order, independent of choice of A and B. From equation (11)
at t = 0 with A = B/a = 2b*/a? we find that

M;(0) = (26%/a*) M2(0) + (26 /a) My (0).
Noting that M1(0) = a and b? = M,(0) we find that
M3(0) = 40> = 4M,(0) (15)

where M, (0} = 3,, are called the damping matrices and are related [17] to the sum rules of
the TCF up to 2ath order. Therefore, our approximation with A = B/a = 2b° /4> predicts
the sixth-order sum rule in terms of lower-order sum rules. Since 8, and 3 are known for
the velocity autocorrelation function from theory [4] as well from the computer simulation
studies [18, 19], equation (11) can be tested. The results obtained for M3(0)/M2(0) = 83/5>
are given in table 1 for various T* = kpT /¢ and n* = no?; ¢ and o are two parameters
of LT fluids. It is seen from the table that this ratio varies from 3.18 to 3.77 as against the
predicted value of 4 from equation (15). This implies that hyperbolic secant memory not
only preserves the sum rules up to fourth order exactly but also satisfies the sixth-order sum
rule with a maximum error of about 25%.

To conclude, it is gratifying to see that a simple hyperbolic secant form of the memory
function is derivable from the Mori equation of motion. This work puts our earlier work
[4-9] on transport coefficients using the hyperbolic secant form of the memory function on
a more theoretical footing. Further the derivation of equation (13) which is well known in
non-linear dynamics widens the scope for the utility of the Mori equation of motion.
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Table 1, Values of ratios 83/32 obtained from molecular dynamics data of Lee and Chung {18).
The value in parentheses represents the MD value obtained by Toxvaerd [19].

n* T 53/8 n' T 83/82
085 0727 318 075 5122 371
085 0778 337 065 1457 331
085 476  3.69 065 1430 330
085 4.6 3.70 065 5084 361
075 1104 326 065 5026 366
075 5267 3.68 030 1575 328
(370
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