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Abstract We have derived a hyperbolic secant form of the memory function h a m  the Mori 
equation of motion using a Markovian approximation and an ansarz for its higher-order memory 
function. The validity of the memory function has also been investigated. 

The Mori integrodifferential equation [l] or motion has played a key role in the study of 
transport and dynamical properties of classical dense fluids. In this approach the fundamental 
theoretical quantity to be estimated is the memory function. Although there exist a 
microscopic formal expression for the memory function, it is not yet possible to calculate it 
exactly. Therefore, a number of phenomenological forms for it have been proposed [2,3] 
in the literature without assigning a theoretical basis for it. In a series of papers [4-91 
we have used a hyperbolic secant form of the memory function to calculate coefficients 
of self diffusion, shear viscosity, thermal conductivity and dynamical properties of dense 
fluids. This model has also been used by Heyes and Powles [IO] to predict the transport 
coefficients of  Lennard-Jones (LJ) fluids. Results of  the model memory function coupl+ 
with microscopic sum rules have offered an interpretation of the transport coefficients [4-71 
of LJ fluids over a wide range of densities and temperatures and also of  dynamical properties 
of fluid argon [9] and a liquid metal [8] as was judged by their comparison with simulation 
and experimental data. Very recently the Mori equation of motion was solved analytically 
[l I] using a sech(bt) form of the memory function. There its advantages over a Gaussian 
memory function and a simple exponential memory function are discussed. However, in 
all these studies the hyperbolic secant memory was used in a phenomenological sense, and 
hence the reason for its success in predicting transport coefficients is not yet fully understood. 
This could be achieved if the phenomenological form of the memory function is derived 
from its equation of motion which is the motivation of  the present work. Therefore, in 
this paper we provide a theoretical formulation for realizing this memory function from the 
Mori equation of motion using two plausible approximations. 

The time evolution of the time correlation function (TCF) C(t )  is obtained from the 
Mori equation of motion given as 

where Ml(t) is the first-order memory function defined as 

~ , ( t )  = (A(o) exp(i(1 - P ) ) L ~ A ( o ) )  (2) 
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with A(t) as a dynamical variable of C(t)  such that 
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CO) = (A(OA(0)) .  

In equation (2). P and L are the projection and the Liouville operators, respectively. From 
the projection operator technique used in deriving equation (I), it can be shown that 
and higher-order memory functions satisfy an equation similar to equation (1) so that 

f dMl0 + 1 M 1 ( t  - r ) M ~ ( r ) d r  = 0 
dt 

and 

where Mz( t )  and M3(t) are the second- and third-order memory functions. 
Defining the Fourier-Laplace transform given as 

f(o) = i lmexp(ior)f( t )  dt 

we rewrite equations (3) and (4) in the Fourier and Laplace space as 

and 

Eliminating &(U) from equations (6) and (7) we obtain 

n i l ( W ) d  + Ml( t  = 0)o - Mz(t = O)&l(O) + B ( W ) ( W . 4 2 l ( W )  + M l ( t  = 0)) = 0. 

On taking the inverse transform of the above equation, we obtain 

where b2 = Mz(t = 0). The realization of the hyperbolic secant memory from equation (9) 
is based on two approximations. First, we use a Markovian approximation, i.e. 

M3(t - T) + M3(f)  (10) 

which is based on the fact that the effect of the operator is to project out [12] the slowly 
varying properties of the system and, therefore, the Markovian approximation can easily be 
used for higher-order memory functions. Further, it has been recently suggested by Nettleton 
[13] that, by a suitable choice of the projection operator appearing in the definition of a 
memory function, one can obtain similar results for the correlation function obtained by 
using the Markovian approximation. 



Realization of hyperbolic secant memory function 573 I 

The second approximation introduces a closure for M3(t) which makes it depend on 
M I  ( t ) .  The ansatz is 

where A and B are two coupling constants. This assumption is very similar to the assumption 
made by Gotze [14] to describe the structural glass transition. Here, it may be noted that 
equation (11) is one stage higher than that of Gijtze's work. However, the nature of 
equation (1) preserves the idea of the feedback phenomena used in explaining supercooled 
liquids or glasses [15]. The physical background of the ansaa is the mode-coupling ideas in 
treating strongly interacting systems. Making use of equations (10) and (1 1) in equation (9), 
we obtain 

-- d2M1(t) Mi( t ) (Ba  - b2) + M?(t ) (B - Aa) + A M : @ )  = 0 
dt2 

where a = Ml(0). This is a non-linear equation €or a conservative system. We have 
tried to solve this equation for M I @ )  numerically for all possible choices of A and B .  
This analysis indicates the possibility of periodic solution 1161 of the equation except for 
A = Bja = 2b2jaz, which on substituting in equation (12) gives 

This equation is well known in non-liiear dynamics and is exactly solvable with its solution 
given by 

M l ( t )  = a sech(bt). (14) 

Thus we see that equation (13) whose solution is a hyperbolic secant function is derivable 
from the Mori equation of motion. Here, it may be noted that equation (14) satisfies the sum 
rules of the TCF up to fourth order, independent of choice of A and B .  From equation (1 1) 
at t = 0 with A = B/a = 2b2/az we find that 

M3(0) = (2b2/a2)M:(0) + (2b2/a)M~(0).  

Noting that M I  (0) = a and b2 = Mz(0)  we find that 

M'(0) = 4b2 = 4Mz(o) (15) 

where M.(O) = 8.. are called the damping mahices and are related [I71 to the sum rules of 
the TCF up to 2nth order. Therefore, our approximation with A = B / a  = 2b2/a2 predicts 
the sixth-order sum rule in terms of lower-order sum rules. Since 82 and 83 are known for 
the velocity autocorrelation function from theory [4] as well from the computer simulation 
studies [IS, 191, equation (11) can be tested. The results obtained for M3(O)/Mz(O) = 83/82 
are given in table 1 for various T* = kBTjE and n* = no'; E and U are two parameters 
of LJ fluids. It is seen from the table that this ratio varies tiom 3.18 to 3.77 as against the 
predicted value of 4 from equation (15). This implies that hyperbolic secant memory not 
only preserves the sum rules up to fourth order exactly but also satisfies the sixth-order sum 
rule with a maximum error of about 25%. 

To conclude, it is gratifying to see that a simple hyperbolic secant form of the memory 
function is derivable from the Mori equation of motion. This work puts our earlier work 
[4-91 on transport coefficients using the hyperbolic secant form of the memory function on 
a more theoretical footing. Further the derivation of equation (13) which is well known in 
non-linear dynamics widens the scope for the utility of the Mori equation of motion. 
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Table 1. Values of h o s  63 JSz obtained from molecular dynamics data of Lee and C h u g  [ 181. 
The value in parenlheses represen& lhe MD value obtained by Toxvaerd [191. 

n' T' 6,Jb n* T* %I& 
0.85 0.727 3.18 0.75 5.122 3.71 
0.85 0.778 3.37 0.65 1.457 3.31 
0.85 4.76 3.69 0.65 1.430 3.30 
0.85 4.66 3.70 0.65 5.084 3.61 
0.75 1.104 3.26 0.65 5.026 3.66 
0.75 5.267 3.68 0.30 1.575 3.28 

(3.771 
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